Привет!
Бутстрап — мощный статистический метод, позволяющий оценить распределение выборочных статистик. В Data Science бутстрап применяется в большом спектре задач.
В статье я постараюсь понятным языком рассказать про особенности, ограничения и сценарии применения бутстрапа, а также я познакомлю вас с различными схемами бутстрапа: Эфронов интервал (простой, но дает смещенную оценку), интервал Холла (несмещенный за счет центрирования) и t-процентильный интервал (несмещенный, шире других, лучшая асимптотика).
Более того, в статье мы реализуем функцию бутстрапа на Python и проведем небольшой эксперимент с помощью разных схем бутстрапирования.
Хабр, привет! Я снова пришёл к вам со статьёй, где показываю мои любимые техники вёрстки.…
Привет, друзья! В этой серии статей мы разбираем структуры данных и алгоритмы, представленные в этом…
Для некоторых задач, связанных с обновлением данных в реальном времени — например, новостные ленты, уведомления…
Со времён появления контекстной рекламы маркетологов не перестаёт мучить вопрос:"А есть ли смысл вести контекст по…
Накануне в прямом эфире прошла большая презентация новой техники от компании Apple. Команда Тима Кука…
10 новых российских сервисов для нарезки шортсов при помощи ИИ, публикации в цифровых СМИ, авто-ответов…