В этой статье я расскажу, как я смог обучить модель, которая превзошла GPT 3.5 Turbo на русскоязычной части MT-Bench. Также я рассмотрю новую конфигурацию для обучения на двух графических процессорах параллельно с помощью accelerate и deepspeed.
Особенный интерес представляет мой датасет для обучения. Он получен из сабсета мультиязычных промтов набора lightblue/tagengo-gpt4 на русском, английском и китайском, всего 10 тысяч примеров, сгенерированных с помощью GPT-4o. Это в 8 раз меньше, чем исходный набор Tagengo, но обученная на последнем Suzume, как показали бенчмарки, лишь очень незначительно превосходит мою модель на ru_mt_bench, а на англоязычном бенче и вовсе уступает ей. Это значит, что я в разы сэкономил на GPU за счет более высокого качества данных, полученных с помощью GPT-4o.
Я использовал скрипт для получения ответов по заданным промптам. Для генерации русскоязычной выборки я изменил часть скрипта, чтобы выбрать все промпты на русском из Tagengo (8K примеров), так как основной фокус при обучении модели был на русском языке.
В итоге я получил датасет ruslandev/tagengo-rus-gpt-4o и приступил к обучению.
Для этого я создал виртуальную машину с NVIDIA H100, используя сервис immers.cloud. Для достижения наилучших результатов по instruction-following (что проверяется на MT-Bench) я взял в качестве исходной модели meta-llama/Meta-Llama-3-8B-Instruct. Именно на ней обучена модель Suzume, у которой высокая оценка на MT Bench. Предыдущие эксперименты показали, что базовая Llama-3 8B, а особенно ее четырехбитная версия для QLoRA – unsloth/llama-3-8b-bnb-4bit – значительно отстает по оценкам бенчмарка.